Asset types
Scope and overview
Assets represent the physical or logical components that each user may install or operate in the Energy Community. Each asset is defined by:
- its type (renewable, battery, heat pump, storage, etc.)
- techno-economic parameters (CAPEX, O&M, lifetime)
- operational constraints
- a profile section defining time-series inputs
Example
asset_name:
PV:
type: <asset_type>
...
profile:
...Below are examples of the most common asset types supported by EnergyCommunity.jl.
Fixed Electrical Loads
Fixed electrical loads represent non-flexible electricity demand that must be met exactly at each timestep. They follow a predefined time-series profile and cannot shift or store energy.
Example
load:
type: load
profile:
load: load_user1 # column name representing the electrical demand profileParameters
The full list of parameters for fixed electrical load assets is shown below:
| Parameter | Unit | Example | Description |
|---|---|---|---|
| type | - | load | Category electrical demand |
| profile | |||
| –load | - | load_user | Load profile code (user-specific) |
Renewable Assets (PV, Wind, run-of-river, ...)
Renewable generators convert environmental resources into electricity. Their production depends on a per-unit availability profile (ren_pu), typically taken from a time-series dataset such as PV or wind capacity factors.
PV:
type: renewable
CAPEX_lin: 1700 # €/kW
OEM_lin: 30 # €/kW/y
lifetime_y: 25 # years
max_capacity: 300 # kW
profile:
ren_pu: pv # name of column with PV availabilityRenewable assets define:
- capital and operating costs,
- lifetime,
- capacity limit,
- a profile: pointing to time-series production.
Parameters
The full list of parameters for renewable assets is shown below:
| Parameter | Unit | Example | Description |
|---|---|---|---|
| type | - | renewable | Category renewable electricity generator |
| CAPEX_lin | €/kW | 1700 | Specific investment cost per unit of installed capacity |
| OEM_lin | €/kW/y | 30 | Specific annual O&M cost linked to installed capacity |
| lifetime_y | years | 25 | Lifetime of the component |
| max_capacity | kW | 300 | Maximum installable capacity |
| profile_ren_pu | - | pv | Per-unit renewable production profile code |
Battery Energy Storage System (BESS)
Batteries store electrical energy and are characterized by:
- round-trip efficiency,
- minimum/maximum state of charge,
- C-rate limits (charge/discharge),
- link to a converter that manages AC/DC conversion.
Example: Battery
batt:
type: battery
CAPEX_lin: 400 # €/kWh
OEM_lin: 5 # €/kWh/y
lifetime_y: 15 # years
eta: 0.92 # round-trip efficiency
max_SOC: 1.0 # upper SOC limit
min_SOC: 0.2 # lower SOC limit
max_capacity: 60 # kW power limit
max_C_dch: 1.0 # max discharge C-rate
max_C_ch: 1.0 # max charge C-rate
corr_asset: conv # associated converter assetParameters
The full list of parameters for battery assets is shown below:
| Parameter | Unit | Example | Description |
|---|---|---|---|
| type | - | battery | Category electrical storage system |
| CAPEX_lin | €/kWh | 400 | Specific investment cost per unit of storage energy capacity |
| OEM_lin | €/kWh/y | 5 | Specific annual O&M cost linked to installed energy capacity |
| lifetime_y | years | 15 | Component lifetime |
| eta | - | 0.92 | Round-trip efficiency of the battery |
| max_SOC | - | 1.0 | Maximum allowable state of charge |
| min_SOC | - | 0.2 | Minimum allowable state of charge |
| max_capacity | kW | 60 | Maximum charge/discharge power capacity |
| max_C_dch | - | 1.0 | Maximum C-rate in discharge |
| max_C_ch | - | 1.0 | Maximum C-rate in charge |
| corr_asset | str | conv | Name of the corresponding converter asset |
Converter
Converters interface DC storage (batteries) with the AC electrical system. They enforce power limits, efficiency, and allowable charge/discharge directions.
Example: Converter
conv:
type: converter
CAPEX_lin: 200 # €/kW
OEM_lin: 2 # €/kW/y
lifetime_y: 10 # years
eta: 1.0 # electrical efficiency
max_dch: 1.0 # max discharge fraction
min_ch: 0.1 # min charge fraction
max_capacity: 60 # kW power rating
corr_asset: batt # linked batteryParameters
The full list of parameters for converter assets is shown below:
| Parameter | Unit | Example | Description |
|---|---|---|---|
| type | - | converter | Category inverter for batteries |
| CAPEX_lin | €/kW | 200 | Specific investment cost per unit of converter power capacity |
| OEM_lin | €/kW/y | 2 | Specific annual O&M cost linked to installed converter capacity |
| lifetime_y | years | 10 | Component lifetime |
| eta | - | 1.0 | Round-trip efficiency of the converter |
| max_dch | - | 1.0 | Maximum discharge rate relative to converter capacity |
| min_ch | - | 0.1 | Minimum charge rate relative to converter capacity |
| max_capacity | kW | 60 | Maximum converter power capacity |
| corr_asset | str | batt | Name of the corresponding battery asset |
Heat Pump
Heat pumps couple the electrical and thermal sectors. They can operate in:
- heating mode (COP > 1),
- cooling mode (EER > 1),
and their performance depends on external and internal temperature profiles.
Example: Heat Pump
hp:
type: heat_pump
CAPEX_lin: 1300 # €/kW (electrical)
OEM_lin: 15 # €/kW/y
lifetime_y: 20 # years
COP_c1: 2.3 # COP at T_c1
COP_c2: 2.7 # COP at T_c2
EER_h1: 3.0 # EER at T_h1
EER_h2: 2.6 # EER at T_h2
T_c1: 2.0 # reference external temp for COP_c1
T_c2: 7.0 # reference external temp for COP_c2
T_h: 55.0 # delivery/condensation temp (heating)
T_h1: 30.0 # reference external temp for EER_h1
T_h2: 35.0 # reference external temp for EER_h2
T_c: 7.0 # evaporator temp (cooling mode)
delta_T_approach: 5.0 # °C, temp approach margin
max_capacity: 50 # kW electrical input power
profile:
T_int: T_int # internal temperature time series
T_ext: T_ext # external temperature time seriesParameters
The full list of parameters for heat pump assets is shown below:
| Parameter | Unit | Example | Description |
|---|---|---|---|
| type | - | heat_pump | Category heat pump enabling heating and cooling |
| CAPEX_lin | €/kW | 1300 | Specific investment cost per unit of electrical capacity |
| OEM_lin | €/kW/y | 15 | Specific fixed annual O&M cost |
| lifetime_y | years | 20 | Component lifetime |
| COP_c1 | - | 2.3 | Nominal COP for heating at reference temperature T_c1 |
| COP_c2 | - | 2.7 | Nominal COP for heating at reference temperature T_c2 |
| EER_h1 | - | 3.0 | Nominal EER for cooling at reference temperature T_h1 |
| EER_h2 | - | 2.6 | Nominal EER for cooling at reference temperature T_h2 |
| T_c1 | °C | 2.0 | Reference external air temperature for COP_c1 |
| T_c2 | °C | 7.0 | Reference external air temperature for COP_c2 |
| T_h | °C | 55.0 | Heating outlet/reference temperature |
| T_h1 | °C | 30.0 | Reference external air temperature for EER_h1 |
| T_h2 | °C | 35.0 | Reference external air temperature for EER_h2 |
| T_c | °C | 7.0 | Cooling evaporator/reference temperature |
| delta_T_approach | K | 5.0 | Temperature approach difference used for COP/EER computation |
| max_capacity | kW | 50 | Maximum electrical input power of the heat pump |
| profile | |||
| –T_int | str or float or list | T_int | Internal temperature profile code |
| –T_ext | str or float or list | T_ext | External temperature profile code |
Thermal Energy Storage (TES)
Thermal storage allows shifting heat production over time. It is modeled with:
- energy capacity (based on water volume and heat capacity),
- thermal losses depending on temperature gradients,
- heating and cooling operating temperatures.
Example: TES Tank
tes:
type: storage
CAPEX_lin: 1 # €/l
OEM_lin: 0.005 # €/l/y
lifetime_y: 35 # years
eta: 0.9 # storage efficiency
max_capacity: 50000 # liters
cp: 0.00116 # kWh/l°C, specific heat capacity
b_tr_x: 0.5 # thermal exposure factor
k: 0.0003 # kWh/h°C, heat loss coefficient
T_ref_heat: 50.0 # °C, reference temperature for heating mode
T_ref_cool: 10.0 # °C, reference temperature for cooling mode
profile:
T_int: T_int # internal air temperature
T_ext: T_ext # external air temperatureParameters
The full list of parameters for thermal storage assets is shown below:
| Parameter | Unit | Example | Description |
|---|---|---|---|
| type | - | storage | Category "Thermal energy storage" (hot/cold water buffer tank) |
| CAPEX_lin | €/l | 1 | Specific investment cost per unit of volume |
| OEM_lin | €/l/y | 0.005 | Specific annual O&M cost linked to installed volume |
| lifetime_y | years | 35 | Component lifetime |
| eta | - | 0.9 | Storage round-trip efficiency |
| max_capacity | l | 50000 | Maximum tank volume |
| cp | kWh/l°C | 0.00116 | Specific heat capacity of storage medium |
| b_tr_x | - | 0.5 | Thermal exposure factor interpolating between indoor and outdoor temperature |
| k | kWh/h°C | 0.0003 | Heat loss coefficient per °C temperature difference |
| T_ref_heat | °C | 50.0 | Reference storage temperature for heating mode |
| T_ref_cool | °C | 10.0 | Reference storage temperature for cooling mode |
| T_input_heat | °C | 20.0 | Lower reference temperature for heating mode |
| T_input_cool | °C | 20.0 | Lower reference temperature for cooling mode |
| profile_T_int | - | T_int | Internal temperature profile |
| profile_T_ext | - | T_ext | External temperature profile |
Boiler (Fuel-Fired Thermal Generator)
Boilers convert fuel (e.g., methane) into heat. Their operation is modeled through:
- thermal efficiency,
- fuel consumption characteristics,
- maximum thermal output,
- optional commitment-related operating costs.
Example: Boiler
boil:
type: boiler
CAPEX_lin: 250 # €/kW
OEM_lin: 10 # €/kW/y
OEM_com: 0.02 # €/kWh/y, variable O&M from commitment
lifetime_y: 20 # years
eta: 0.94 # thermal efficiency
PCI: 9.97 # kWh/m³, lower heating value of fuel
fuel_price: 0.2 # €/m³
max_capacity: 60 # kWth maximum thermal outputParameters
The full list of parameters for boiler assets is shown below:
| Parameter | Unit | Example | Description |
|---|---|---|---|
| type | - | boiler | Category boiler for heating |
| CAPEX_lin | €/kW | 250 | Specific investment cost per unit of thermal power capacity |
| OEM_lin | €/kW/y | 10 | Specific annual O&M cost linked to capacity |
| lifetime_y | years | 20 | Component lifetime |
| eta | - | 0.94 | Thermal efficiency of fuel-to-heat conversion |
| PCI | kWh/unit | 9.97 | Lower heating value of fuel (r.g. natural gas) |
| fuel_price | €/unit | 0.2 | Fuel cost |
| max_capacity | kWth | 60 | Maximum thermal output power |
Thermal Loads
Thermal loads represent time-dependent heating or cooling demand. They can be served by:
- heat pumps,
- boilers,
- thermal energy storage (TES).
The operating mode is determined by a profile value:
- +1 → heating mode
- −1 → cooling mode
Example: Thermal Load
t_load:
type: t_load
corr_asset: [hp, boil, tes] # assets that can satisfy this demand
profile:
t_load: t_load_u1_heat_cool # time-series for thermal demand
mode: mode # heating (+1) or cooling (-1)Parameters
The full list of parameters for thermal load assets is shown below:
| Parameter | Unit | Example | Description | Column5 |
|---|---|---|---|---|
| type | - | t_load | Category Thermal demand for heating/cooling | |
| corr_asset | list | [hp,boil,tes] | List of assets serving this thermal load | |
| profile | ||||
| –t_load | - | t_load_u1_heat_cool | Thermal load profile code | |
| –mode | - | mode | Operating mode: +1 heating | -1 cooling (or time series) |
Adjustable Electrical Loads
Adjustable loads behave like a small virtual battery:
- they can withdraw power from the grid,
- they can feed power back (optional),
- they track an internal "energy" state,
- they must respect min/max energy and power bounds.
They allow modeling:
- EV charging,
- flexible appliances,
- shiftable industrial loads.
Example: Adjustable Load
load_adj:
type: load_adj
eta_P: 0.95 # efficiency when supplying (discharging)
eta_N: 0.95 # efficiency when absorbing (charging)
profile:
energy_exchange: load_user1_adj # exogenous energy variations
max_supply: max_supply_user1 # max power supplied to grid
max_withdrawal: max_withdrawal_user1
min_energy: min_energy_user1 # minimum allowed "energy" state
max_energy: max_energy_user1 # maximum allowed "energy" stateParameters
The full list of parameters for adjustable load assets is shown below:
| Parameter | Unit | Example | Description |
|---|---|---|---|
| type | - | load_adj | Category adjustable (flexible) electrical load |
| eta_P | - | 0.95 | Efficiency when supplying energy (discharging to the grid) |
| eta_N | - | 0.95 | Efficiency when absorbing energy (charging from the grid) |
| profile | |||
| –energy_exchange | - | load_user1_adj | Profile for exogenous energy exchange (positive or negative) |
| –max_supply | - | max_supply_user1 | Maximum power the adjustable load can supply at each timestep |
| –max_withdrawal | - | max_withdrawal_user1 | Maximum power the adjustable load can withdraw at each timestep |
| –min_energy | - | min_energy_user1 | Minimum allowed energy content over time |
| –max_energy | - | max_energy_user1 | Maximum allowed energy content over time |