Asset types

Scope and overview

Assets represent the physical or logical components that each user may install or operate in the Energy Community. Each asset is defined by:

  • its type (renewable, battery, heat pump, storage, etc.)
  • techno-economic parameters (CAPEX, O&M, lifetime)
  • operational constraints
  • a profile section defining time-series inputs

Example

asset_name:
  PV:
    type: <asset_type>
    ...
    profile:
      ...

Below are examples of the most common asset types supported by EnergyCommunity.jl.

Fixed Electrical Loads

Fixed electrical loads represent non-flexible electricity demand that must be met exactly at each timestep. They follow a predefined time-series profile and cannot shift or store energy.

Example

load:
  type: load
  profile:
    load: load_user1     # column name representing the electrical demand profile

Parameters

The full list of parameters for fixed electrical load assets is shown below:

ParameterUnitExampleDescription
type-loadCategory electrical demand
profile
–load-load_userLoad profile code (user-specific)

Renewable Assets (PV, Wind, run-of-river, ...)

Renewable generators convert environmental resources into electricity. Their production depends on a per-unit availability profile (ren_pu), typically taken from a time-series dataset such as PV or wind capacity factors.

PV:
  type: renewable
  CAPEX_lin: 1700       # €/kW
  OEM_lin: 30           # €/kW/y
  lifetime_y: 25        # years
  max_capacity: 300     # kW
  profile:
    ren_pu: pv          # name of column with PV availability

Renewable assets define:

  • capital and operating costs,
  • lifetime,
  • capacity limit,
  • a profile: pointing to time-series production.

Parameters

The full list of parameters for renewable assets is shown below:

ParameterUnitExampleDescription
type-renewableCategory renewable electricity generator
CAPEX_lin€/kW1700Specific investment cost per unit of installed capacity
OEM_lin€/kW/y30Specific annual O&M cost linked to installed capacity
lifetime_yyears25Lifetime of the component
max_capacitykW300Maximum installable capacity
profile_ren_pu-pvPer-unit renewable production profile code

Battery Energy Storage System (BESS)

Batteries store electrical energy and are characterized by:

  • round-trip efficiency,
  • minimum/maximum state of charge,
  • C-rate limits (charge/discharge),
  • link to a converter that manages AC/DC conversion.

Example: Battery

batt:
  type: battery
  CAPEX_lin: 400        # €/kWh
  OEM_lin: 5            # €/kWh/y
  lifetime_y: 15        # years
  eta: 0.92             # round-trip efficiency
  max_SOC: 1.0          # upper SOC limit
  min_SOC: 0.2          # lower SOC limit
  max_capacity: 60      # kW power limit
  max_C_dch: 1.0        # max discharge C-rate
  max_C_ch: 1.0         # max charge C-rate
  corr_asset: conv      # associated converter asset

Parameters

The full list of parameters for battery assets is shown below:

ParameterUnitExampleDescription
type-batteryCategory electrical storage system
CAPEX_lin€/kWh400Specific investment cost per unit of storage energy capacity
OEM_lin€/kWh/y5Specific annual O&M cost linked to installed energy capacity
lifetime_yyears15Component lifetime
eta-0.92Round-trip efficiency of the battery
max_SOC-1.0Maximum allowable state of charge
min_SOC-0.2Minimum allowable state of charge
max_capacitykW60Maximum charge/discharge power capacity
max_C_dch-1.0Maximum C-rate in discharge
max_C_ch-1.0Maximum C-rate in charge
corr_assetstrconvName of the corresponding converter asset

Converter

Converters interface DC storage (batteries) with the AC electrical system. They enforce power limits, efficiency, and allowable charge/discharge directions.

Example: Converter

conv:
  type: converter
  CAPEX_lin: 200        # €/kW
  OEM_lin: 2            # €/kW/y
  lifetime_y: 10        # years
  eta: 1.0              # electrical efficiency
  max_dch: 1.0          # max discharge fraction
  min_ch: 0.1           # min charge fraction
  max_capacity: 60      # kW power rating
  corr_asset: batt      # linked battery

Parameters

The full list of parameters for converter assets is shown below:

ParameterUnitExampleDescription
type-converterCategory inverter for batteries
CAPEX_lin€/kW200Specific investment cost per unit of converter power capacity
OEM_lin€/kW/y2Specific annual O&M cost linked to installed converter capacity
lifetime_yyears10Component lifetime
eta-1.0Round-trip efficiency of the converter
max_dch-1.0Maximum discharge rate relative to converter capacity
min_ch-0.1Minimum charge rate relative to converter capacity
max_capacitykW60Maximum converter power capacity
corr_assetstrbattName of the corresponding battery asset

Heat Pump

Heat pumps couple the electrical and thermal sectors. They can operate in:

  • heating mode (COP > 1),
  • cooling mode (EER > 1),

and their performance depends on external and internal temperature profiles.

Example: Heat Pump

hp:
  type: heat_pump
  CAPEX_lin: 1300       # €/kW (electrical)
  OEM_lin: 15           # €/kW/y
  lifetime_y: 20        # years

  COP_c1: 2.3           # COP at T_c1
  COP_c2: 2.7           # COP at T_c2
  EER_h1: 3.0           # EER at T_h1
  EER_h2: 2.6           # EER at T_h2

  T_c1: 2.0             # reference external temp for COP_c1
  T_c2: 7.0             # reference external temp for COP_c2
  T_h: 55.0             # delivery/condensation temp (heating)
  T_h1: 30.0            # reference external temp for EER_h1
  T_h2: 35.0            # reference external temp for EER_h2
  T_c: 7.0              # evaporator temp (cooling mode)

  delta_T_approach: 5.0 # °C, temp approach margin
  max_capacity: 50      # kW electrical input power

  profile:
    T_int: T_int        # internal temperature time series
    T_ext: T_ext        # external temperature time series

Parameters

The full list of parameters for heat pump assets is shown below:

ParameterUnitExampleDescription
type-heat_pumpCategory heat pump enabling heating and cooling
CAPEX_lin€/kW1300Specific investment cost per unit of electrical capacity
OEM_lin€/kW/y15Specific fixed annual O&M cost
lifetime_yyears20Component lifetime
COP_c1-2.3Nominal COP for heating at reference temperature T_c1
COP_c2-2.7Nominal COP for heating at reference temperature T_c2
EER_h1-3.0Nominal EER for cooling at reference temperature T_h1
EER_h2-2.6Nominal EER for cooling at reference temperature T_h2
T_c1°C2.0Reference external air temperature for COP_c1
T_c2°C7.0Reference external air temperature for COP_c2
T_h°C55.0Heating outlet/reference temperature
T_h1°C30.0Reference external air temperature for EER_h1
T_h2°C35.0Reference external air temperature for EER_h2
T_c°C7.0Cooling evaporator/reference temperature
delta_T_approachK5.0Temperature approach difference used for COP/EER computation
max_capacitykW50Maximum electrical input power of the heat pump
profile
–T_intstr or float or listT_intInternal temperature profile code
–T_extstr or float or listT_extExternal temperature profile code

Thermal Energy Storage (TES)

Thermal storage allows shifting heat production over time. It is modeled with:

  • energy capacity (based on water volume and heat capacity),
  • thermal losses depending on temperature gradients,
  • heating and cooling operating temperatures.

Example: TES Tank

tes:
  type: storage
  CAPEX_lin: 1          # €/l
  OEM_lin: 0.005        # €/l/y
  lifetime_y: 35        # years

  eta: 0.9              # storage efficiency
  max_capacity: 50000   # liters
  cp: 0.00116           # kWh/l°C, specific heat capacity
  b_tr_x: 0.5           # thermal exposure factor
  k: 0.0003             # kWh/h°C, heat loss coefficient

  T_ref_heat: 50.0      # °C, reference temperature for heating mode
  T_ref_cool: 10.0      # °C, reference temperature for cooling mode

  profile:
    T_int: T_int        # internal air temperature
    T_ext: T_ext        # external air temperature

Parameters

The full list of parameters for thermal storage assets is shown below:

ParameterUnitExampleDescription
type-storageCategory "Thermal energy storage" (hot/cold water buffer tank)
CAPEX_lin€/l1Specific investment cost per unit of volume
OEM_lin€/l/y0.005Specific annual O&M cost linked to installed volume
lifetime_yyears35Component lifetime
eta-0.9Storage round-trip efficiency
max_capacityl50000Maximum tank volume
cpkWh/l°C0.00116Specific heat capacity of storage medium
b_tr_x-0.5Thermal exposure factor interpolating between indoor and outdoor temperature
kkWh/h°C0.0003Heat loss coefficient per °C temperature difference
T_ref_heat°C50.0Reference storage temperature for heating mode
T_ref_cool°C10.0Reference storage temperature for cooling mode
T_input_heat°C20.0Lower reference temperature for heating mode
T_input_cool°C20.0Lower reference temperature for cooling mode
profile_T_int-T_intInternal temperature profile
profile_T_ext-T_extExternal temperature profile

Boiler (Fuel-Fired Thermal Generator)

Boilers convert fuel (e.g., methane) into heat. Their operation is modeled through:

  • thermal efficiency,
  • fuel consumption characteristics,
  • maximum thermal output,
  • optional commitment-related operating costs.

Example: Boiler

boil:
  type: boiler
  CAPEX_lin: 250        # €/kW
  OEM_lin: 10           # €/kW/y
  OEM_com: 0.02         # €/kWh/y, variable O&M from commitment
  lifetime_y: 20        # years

  eta: 0.94             # thermal efficiency
  PCI: 9.97             # kWh/m³, lower heating value of fuel
  fuel_price: 0.2       # €/m³

  max_capacity: 60      # kWth maximum thermal output

Parameters

The full list of parameters for boiler assets is shown below:

ParameterUnitExampleDescription
type-boilerCategory boiler for heating
CAPEX_lin€/kW250Specific investment cost per unit of thermal power capacity
OEM_lin€/kW/y10Specific annual O&M cost linked to capacity
lifetime_yyears20Component lifetime
eta-0.94Thermal efficiency of fuel-to-heat conversion
PCIkWh/unit9.97Lower heating value of fuel (r.g. natural gas)
fuel_price€/unit0.2Fuel cost
max_capacitykWth60Maximum thermal output power

Thermal Loads

Thermal loads represent time-dependent heating or cooling demand. They can be served by:

  • heat pumps,
  • boilers,
  • thermal energy storage (TES).

The operating mode is determined by a profile value:

  • +1 → heating mode
  • −1 → cooling mode

Example: Thermal Load

t_load:
  type: t_load
  corr_asset: [hp, boil, tes]   # assets that can satisfy this demand
  profile:
    t_load: t_load_u1_heat_cool # time-series for thermal demand
    mode: mode                  # heating (+1) or cooling (-1)

Parameters

The full list of parameters for thermal load assets is shown below:

ParameterUnitExampleDescriptionColumn5
type-t_loadCategory Thermal demand for heating/cooling
corr_assetlist[hp,boil,tes]List of assets serving this thermal load
profile
–t_load-t_load_u1_heat_coolThermal load profile code
–mode-modeOperating mode: +1 heating-1 cooling (or time series)

Adjustable Electrical Loads

Adjustable loads behave like a small virtual battery:

  • they can withdraw power from the grid,
  • they can feed power back (optional),
  • they track an internal "energy" state,
  • they must respect min/max energy and power bounds.

They allow modeling:

  • EV charging,
  • flexible appliances,
  • shiftable industrial loads.

Example: Adjustable Load

load_adj:
  type: load_adj

  eta_P: 0.95               # efficiency when supplying (discharging)
  eta_N: 0.95               # efficiency when absorbing (charging)

  profile:
    energy_exchange: load_user1_adj   # exogenous energy variations
    max_supply: max_supply_user1      # max power supplied to grid
    max_withdrawal: max_withdrawal_user1
    min_energy: min_energy_user1      # minimum allowed "energy" state
    max_energy: max_energy_user1      # maximum allowed "energy" state

Parameters

The full list of parameters for adjustable load assets is shown below:

ParameterUnitExampleDescription
type-load_adjCategory adjustable (flexible) electrical load
eta_P-0.95Efficiency when supplying energy (discharging to the grid)
eta_N-0.95Efficiency when absorbing energy (charging from the grid)
profile
–energy_exchange-load_user1_adjProfile for exogenous energy exchange (positive or negative)
–max_supply-max_supply_user1Maximum power the adjustable load can supply at each timestep
–max_withdrawal-max_withdrawal_user1Maximum power the adjustable load can withdraw at each timestep
–min_energy-min_energy_user1Minimum allowed energy content over time
–max_energy-max_energy_user1Maximum allowed energy content over time